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ABSTRACT 

 Let 𝑆  be a  𝜒′-set of 𝐺. A subset 𝑇   𝑆 is said to be a forcing subset for 𝑆  if 𝑆 is the 

unique 𝜒′ -set containing T. The forcing edge chromatic number 𝑓𝜒′(𝑆)   of  𝑆  in 𝐺 is the 

minimum cardinality of a forcing subset for 𝑆. The forcing edge chromatic number 𝑓𝜒′(𝐺)  of 

𝐺 is the smallest forcing number of all 𝜒′-sets of 𝐺. In this article, some general properties 

satisfied by this concept are studied and the forcing edge chromatic number of some standard 

graphs are determined. Also, connected graphs of order n ≥ 2 edge chromatic number 0 or 1 

or  χ′(G) are characterized. It is shown that for a positive integer a ≥ 2, there exists a connected 

graph G such that fχ′(G) = χ′(G) = a. 
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1. Introduction 

          By a graph 𝐺 =  (𝑉, 𝐸), we mean a finite,undirected connected graph without loops or 

multiple edges. The order and size of 𝐺 are denoted by 𝑛 and 𝑚 respectively. For basic graph 

theoretic terminology, we refer to [1]. Two vertices 𝑢 and 𝑣 are said to be adjacent if 𝑢𝑣 is an 

edge of 𝐺. Two edges of 𝐺 are said to be adjacent if they have a common vertex.  

           A 𝑘-coloring of 𝐺 is a function 𝑐 ∶  𝑉 (𝐺) →  {1, 2, . . . , 𝑘}, where 𝑐(𝑢)  ≠  𝑐(𝑣) for any 

two adjacent vertices 𝑢  and 𝑣  in 𝐺 . A 𝑝-vertex coloring of 𝐺 is an assignment of 𝑝 colors, 

1,2, . . . 𝑝 to the vertices of 𝐺, the coloring is proper if no two distinct adjacent vertices have the 

same color. The minimum colours needed to colour the vertices of 𝐺  is called chromatic 

number of 𝐺, denoted by 𝜒(𝐺).If 𝜒(𝐺)  =  𝑝, 𝐺 is said to be 𝑝 - chromatic, where 𝑝 ≤  𝑘. A 

set 𝐶 ⊆  𝑉 (𝐺) is  called chromatic set if 𝐶 contains all vertices of distinct colors in 𝐺. The 

chromatic number of 𝐺 is the minimum cardinality among all the chromatic sets of 𝐺.  That is 

𝜒(𝐺)  =  𝑚𝑖𝑛{|𝐶𝑖|/ 𝐶𝑖 is a chromatic set of 𝐺}. The concept of the chromatic  number was 

studied in [2,3,4]. A 𝑘 -edge coloring of 𝐺  is a function  𝑐′ ∶  𝐸 (𝐺) →  {1, 2, . . . , 𝑘} , where 

𝑐′(𝑒)  ≠  𝑐′(𝑓) for any two adjacent edges  𝑒  and 𝑓  in 𝐺 . A 𝑝 -edge coloring of 𝐺 is an 

assignment of 𝑝 colors, 1,2, . . . 𝑝 to the edges of 𝐺, the coloring is proper if no two distinct 

adjacent edges have the same color. The minimum colours needed to colour the edges of 𝐺 is 

called edge chromatic number of 𝐺, denoted by 𝜒′(𝐺).If 𝜒′(𝐺)  =  𝑝, 𝐺 is said to be 𝑝 –edge 

chromatic, where 𝑝 ≤ 𝑘. A set 𝐶′ ⊆  𝐸 (𝐺) is  called edge chromatic set if 𝐶′  contains all 

mailto:sujinflower@gmail.com


ISSN 0976-5417                                 Cross Res. : June 2023                              Vol. 14 No. 1 
 

50 

 

edges of distinct colors in 𝐺. The egde chromatic number of 𝐺 is the minimum cardinality 

among all the edge chromatic sets of 𝐺.  That is 𝜒′(𝐺)  =  𝑚𝑖𝑛{|𝐶𝑖
′|/ 𝐶𝑖

′is a  edge chromatic 

set of 𝐺} . An edge chromatic set of cardinality 𝜒′(𝐺)  is called a 𝜒′ -set of 𝐺.The edge- 

chromatic number 𝜒′(𝐺)  of 𝐺 is defined to be the least number of colours needed to colour the 

edges of 𝐺 in such a way that no two adjacent edges have the same colour. The concept of the 

edge chromatic number was studied in [5,6,7]. The chromatic number has application in Time 

Table Scheduling, Map coloring, channel assignment problem in radio technology, town 

planning, GSM mobile phone networks etc.[8,9]. 

2. The forcing edge chromatic number of some standard graphs 

Definition 2.1.  Let 𝑆  be a  𝜒′-set of 𝐺. A subset 𝑇   𝑆 is said to be a forcing subset for𝑆if 𝑆 

is the unique 𝜒′-set containing T. The forcing edge chromatic number 𝑓𝜒′(𝑆)  of  𝑆in 𝐺is the 

minimum cardinality of a forcing subset for 𝑆. The forcing edge chromatic number 𝑓𝜒′(𝐺)  of 

𝐺 is the smallest forcing number of all 𝜒′-sets of 𝐺. 

Example 2.2. For the graph 𝐺 given in Figure 2.1, 𝑆1= {𝑒1, 𝑒2, 𝑒3, 𝑒4},𝑆2= {𝑒6, 𝑒2, 𝑒3, 𝑒4}, 

𝑆3 = {𝑒1, 𝑒5, 𝑒3, 𝑒4}, 𝑆4 = {𝑒6, 𝑒5, 𝑒3, 𝑒4}   are the only two 𝜒′ -sets of 𝐺  such that 𝜒′(𝐺) =

3, 𝑓𝜒′(𝑆1) = 𝑓𝜒′(𝑆2) = 𝑓𝜒′(𝑆3) = 𝑓𝜒′(𝑆4) = 2 so that  𝑓𝜒′(𝐺) = 2. 

 

The following result follows immediately from the definitions of the edge chromatic number 

and the forcing edge chromatic number of a connected graph 𝐺. 

Observation 2.3. For every connected graph𝐺, 0 ≤ 𝑓𝜒′(𝐺) ≤ 𝜒′(𝐺). 

Remark 2.4. The bounds in the Observation 2.3 are sharp. For the complete graph 

𝐺 = 𝐾3,   𝑆 = 𝐸(𝐺) is the unique 𝜒′-set of 𝐺  so that 𝑓𝜒′(𝐺) = 0. For the graph 𝐺  given in 

Figure 2.2, 𝑆1 = {𝑒1, 𝑒2, 𝑒3} ,  𝑆2 = {𝑒1, 𝑒4, 𝑒5 },  𝑆3 = {𝑒1, 𝑒2, 𝑒6}, 𝑆4 = {𝑒1, 𝑒4, 𝑒6} , 𝑆5 =

{𝑒3, 𝑒2,𝑒5}, 𝑆6 = {𝑒3, 𝑒4, 𝑒5}, 𝑆7 = {𝑒3, 𝑒2, 𝑒6}, 𝑆8 = {𝑒3, 𝑒4, 𝑒6}such that𝑓𝜒′(𝑆𝑖) = 3  for 𝑖 = 1 
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to 8 and  𝜒′(𝐺) = 3so that 𝑓𝜒′(𝐺) = 𝜒′(𝐺) = 3. Also the bounds are strict. For the graph in 

Figure 2.1, 𝜒′(𝐺) = 4, 𝑓𝜒′(𝐺) = 2. Thus 0 < 𝑓𝜒′(𝐺) < 𝜒′(𝐺). 

                         

Definition: 2.5. An edge 𝑒 of a graph 𝐺 is said to be an edge chromatic edge of 𝐺 if 

𝑒 belongs to every 𝜒′-set of 𝐺. 

Example 2.6. For the graph 𝐺  given in Figure 2.3, 𝑆1 = {𝑒1, 𝑒2, 𝑒3} , 𝑆2 = {𝑒1, 𝑒2, 𝑒4},  𝑆3 = 

{𝑒5, 𝑒2, 𝑒3}, 𝑆4= {𝑒5, 𝑒2, 𝑒4}  are the only 𝜒′-sets of 𝐺 such that 𝑒2 is a chromatic edge of 𝐺. 

 

 Theorem 2.7. Let 𝐺 be a connected graph of order 𝑛 ≥ 2 with ∆(𝐺) = 𝑛 − 1. Let 𝑥 be 

auniversal vertex of 𝐺 and 𝑒 be an edge incident with 𝑥. Then 𝑒 is a chromatic edge of 

𝐺. 

Proof. On the contrary, suppose that 𝑒 is not a chromatic edge of 𝐺. Then there exists 

a 𝜒′-set 𝑆 of 𝐺 such that𝑒 = 𝑢𝑣. Let 𝑐(𝑒) = 𝑐1.  Since𝑒 ∉ 𝑆, there exists 𝑓 = 𝑦𝑧 ∈ 𝐸(𝐺) 

such that 𝑐(𝑓) =  𝑐1 and 𝑦 ≠ 𝑥, 𝑣 and 𝑧 ≠ 𝑥, 𝑣. Hence it follows that 𝑥 is not a universal 

vertex of 𝐺, which is a contradiction. Therefore 𝑒 is a chromatic edge of 𝐺.   

Theorem 2.8. Let 𝐺 be a connected graph. Then  

(a) 𝑓𝜒′(𝐺) = 0 if and only if 𝐺 has a unique𝜒′-set. 

(b) 𝑓𝜒′(𝐺) = 1 if and only if 𝐺 has at least two𝜒′-sets, one of which is a 
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unique 𝜒′-set containing one of its elements, and 

 (c) 𝑓𝜒′(𝐺) = 𝜒′(𝐺)if and only if no 𝜒′ -set of 𝐺 is the unique 𝜒′–set  

containing any of its proper subsets.  

Proof. (a) Let 𝑓𝜒′(𝐺)  =  0. Then, by definition,  𝑓𝜒′(𝑆)  =  0 for some 𝜒′ -set 𝑆 of 𝐺 so 

that the empty set is the minimum forcing subset for 𝑆. Since the empty set  is a 

subset of every set, it follows that 𝑆 is the unique 𝜒′-set of 𝐺. The converse is clear. 

(b) Let 𝑓𝜒′(𝐺) =  1. Then by Theorem 2.8(a), 𝐺 has at least two 𝜒′-sets. Also, since 

𝑓𝜒′(𝐺)  =  1, there is a singleton subset 𝑇 of a 𝜒′-set  𝑆 of 𝐺 such that 𝑇 is not a subset 

of any other 𝜒′ -set of 𝐺. Thus 𝑆 is the unique 𝜒′ -set containing one of its elements. 

The converse is clear. 

 (c) Let 𝑓𝜒′(𝐺) =  𝜒′(𝐺). Then 𝑓𝜒′(𝐺) = 𝜒′(𝐺)for every 𝜒′-set 𝑆 in 𝐺. Also, by  

Observation 2.3, 𝜒′(𝐺)  ≥  2 and hence 𝑓𝜒′(𝐺)  ≥  2. Then by Theorem 2.8(a),  

𝐺 has at least two 𝜒′-sets and so the empty set   is not a forcing subset for any  

𝜒′-set of 𝐺. Since 𝑓𝜒′(𝑆) =  𝜒′(𝐺), no proper subset of 𝑆 is a forcing subset of 𝑆.  

Thus no 𝜒′-set of  𝐺 is the unique 𝜒′-set containing any of its proper subsets.  

Conversely, the data implies that 𝐺 contains more than one 𝜒′ -set and no subset  

of any 𝜒′ -set  𝑆  other than 𝑆  is a forcing subset for 𝑆 . Hence it follows that 

𝑓𝜒′(𝐺) = 𝜒′(𝐺).                                                                                                                              

Theorem 2.9. Let 𝐺 be a connected graph and 𝑊 be the set of all chromaticedges      

of 𝐺. Then𝑓𝜒′(𝐺)   ≤ 𝜒′(𝐺) – |𝑊|. 

Proof. Let 𝑆 be any 𝜒′-set of 𝐺. Then 𝜒′(𝐺)  =  |𝑆|, 𝑊 ⊆  𝑆 and 𝑆 is the unique 𝜒′-set 

containing 𝑆 – 𝑊. Thus 𝑓𝜒′(𝐺) ≤  |𝑆–  𝑊 |  =  | 𝑆| – | 𝑊 |  =  𝜒′(𝐺) – |𝑊|. 

In the following we determine the forcing edge chromatic number of some standard graphs. 

Theorem 2.10. For the complete graph 𝐺= 𝐾𝑛(𝑛 ≥  2), 

𝑓𝜒′(𝐺) =  {

0      𝑖𝑓 𝑛 = 2,3       
3     𝑖𝑓 𝑛 = 4             
𝑛 − 1  𝑖𝑓 𝑛 ≥ 5        

 

Proof. For 𝑛 = 2 and 𝑛 = 3, 𝑆 = 𝐸(𝐺) is the unique 𝜒′-set of 𝐺, the result follows from 

Theorem 2.8 (a). For 𝑛 = 4, let 𝑒11 = 𝑣1𝑣2,  𝑒12 = 𝑣1𝑣3, 𝑒13 = 𝑣1𝑣4, 𝑒21 = 𝑣2𝑣3,  𝑒22 =

𝑣2𝑣4 , 𝑒31 = 𝑣3𝑣4.  Assign 𝑐′(𝑒11) = 𝑐′(𝑒31) = 1,  𝑐′(𝑒12) = 𝑐′(𝑒22) = 2, 𝑐′(𝑒13) =

𝑐′(𝑒21) = 3.  Then 𝑆1 = {𝑒11, 𝑒12, 𝑒13} ,   𝑆2 = {𝑒11, 𝑒12, 𝑒21 },  𝑆3 = {𝑒11, 𝑒22, 𝑒13}, 𝑆4 =

{𝑒11, 𝑒22, 𝑒21} , 𝑆5 = {𝑒31, 𝑒12 , 𝑒13}, 𝑆6 = {𝑒31, 𝑒12, 𝑒21}, 𝑆7 = {𝑒31, 𝑒22, 𝑒13} , 𝑆8 =
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{𝑒31, 𝑒22, 𝑒21} are the  𝜒′-set of 𝐺 such that  𝑓𝜒′(𝑆𝑖) = 3  for 𝑖 = 1 to 8 so that  𝑓𝜒′(𝐺) = 3. 

For 𝑛 ≥ 5,   let 𝑒1𝑗 = 𝑣1𝑣𝑗(2 ≤ 𝑗 ≤ 𝑛), 𝑒2𝑗 = 𝑣2𝑣𝑗(3 ≤ 𝑗 ≤ 𝑛) , 𝑒3𝑗 = 𝑣3𝑣𝑗(4 ≤ 𝑗 ≤ 𝑛) , 

… , 𝑒(𝑛−1)𝑗 = 𝑣𝑛−1𝑣𝑛.  Assign 𝑐′(𝑒1𝑗) = 𝑐𝑗
′,  𝑐′(𝑒2𝑗) = 𝑐𝑗

′ − 1 (1 ≤ 𝑗 ≤ 𝑛 − 1),   𝑐′(𝑒3𝑗) =

𝑐𝑗
′ − 2 (1 ≤ 𝑗 ≤ 𝑛 − 1), … … … , 𝑐′(𝑒(𝑛−1)𝑗) =  𝑐𝑗

′ − (𝑛 − 2) (1 ≤ 𝑗 ≤ 𝑛 − 1),

𝑐′(𝑒(𝑛−2)𝑗) =  𝑛 so that 𝜒′(𝐺) = 𝑛. Since 𝑒(𝑛−2)𝑗 is a chromatic edge of 𝐺, by Theorem 2.9, 

𝑓𝜒′(𝐺) ≤ 𝑛 − 1. Let 𝑆 be a chromatic edge set of 𝐺. We prove that 𝑓𝜒′(𝐺) = 𝑛 − 1. On the 

contrary, suppose that 𝑓𝜒′(𝐺) ≤ 𝑛 − 2. Then there exists a forcing subset 𝑇 of 𝑆 such that 

|𝑇| ≤ 𝑛 − 2. Let 𝑒 ∈ 𝑆 such that 𝑒 ∉ 𝑇. Then 𝑒 is not a chromatic edge of 𝐺. Without loss of 

generality, let us assume that 𝑐′(𝑒) = 𝑐1
′ .  Since 𝑛 ≥ 5,  there exists 𝑓 ∈ 𝐸(𝐺)  such that 

𝑐′(𝑓) = 𝑐1
′ . Let 𝑆′ = [𝑆 − {𝑒}] ∪ {𝑓}.  Then 𝑆′ is a 𝜒′-set of 𝐺.  Hence 𝑇  is a proper subset 

of a 𝜒′-set𝑆′ of 𝐺, which is a contradiction. Therefore  𝑓𝜒′(𝐺) = 𝑛 − 1. 

Theorem 2.11. For the star graph  𝐺 = 𝐾1,𝑛−1 (𝑛 ≥ 3),  𝑓𝜒′(𝐺) =  1. 

Proof. Since 𝑆 = 𝐸(𝐺) is the unique 𝜒′-set of 𝐺, the result follows from Theorem 2.8(a)    

Theorem 2.12. For the double star graph   𝐺 = 𝐾2,𝑟,𝑠,  𝑓𝜒′(𝐺) =  2. 

Proof. Let  𝑉 = {𝑥, 𝑣1, 𝑣2, … , 𝑣𝑟} ∪ {𝑦, 𝑢1, 𝑢2, … , 𝑢𝑠}  be the vertex set of 𝐺. Let 𝑓𝑖 = 𝑥𝑣𝑖, 𝑒 =

𝑥𝑦, 𝑔𝑖 = 𝑦𝑢𝑗  be the edge set of 𝐺 for all ( 1 ≤  𝑖 ≤  𝑟) and ( 1 ≤ 𝑗 ≤  𝑠)where 𝑟 + 𝑠 = 𝑛 −

2. Then 𝑆1 = {𝑒, 𝑓𝑖} ( 1 ≤  𝑖 ≤  𝑟) and 𝑆2 = {𝑒, 𝑔𝑗}( 1 ≤  𝑗 ≤  𝑠) are the only 𝜒′  -sets of 

𝐺  such that  𝑓𝜒′(𝑆1) =  𝑓𝜒′(𝑆2) = 2 so that𝑓𝜒′(𝐺) =  2. 

 Theorem 2.13. For the complete bipartite graph 𝐺 =  𝐾𝑟,𝑠 (1 ≤  𝑟 ≤  𝑠),   

𝑓𝜒′(𝐺) =  {

0     𝑖𝑓 𝑟 = 1, 𝑠 = 1              
2    𝑖𝑓 𝑟 = 2, 𝑠 = 2               
𝑠      𝑖𝑓 2 ≤ 𝑟 ≤ 𝑠               

 

Proof. For 𝑟 = 1 and 𝑠 ≥ 2,  then the result follows from Theorem 2.11. For 𝑟 = 2 and 𝑠 = 2, 

𝑆1 = {𝑒11, 𝑒12},𝑆2 = {𝑒11, 𝑒21},𝑆3 = {𝑒22, 𝑒12}, 𝑆4 = {𝑒22, 𝑒21}   are the  𝜒′-sets of 𝐺 such 

that 𝑓𝜒′(𝑆𝑖) = 2   for 𝑖 = 1  to 4 so that 𝑓𝜒′(𝐺) =  2.  So let 2 ≤ 𝑟 ≤ 𝑠.  Let 𝑋 =

 {𝑥1, 𝑥2, … , 𝑥𝑟}  and 𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑠 } be the bipartite sets of 𝐺 .Let 𝑒1𝑗 = 𝑥1𝑦𝑗(1 ≤ 𝑗 ≤

𝑠), 𝑒2𝑗 = 𝑥2𝑦𝑗(1 ≤ 𝑗 ≤ 𝑠) ,  … … … , 𝑒𝑖𝑗 = 𝑥𝑖𝑦𝑗(1 ≤ 𝑖 ≤ 𝑟)(1 ≤ 𝑗 ≤ 𝑠).  Assign 𝑐′(𝑒1𝑗) =

𝑐𝑗
′(1 ≤ 𝑗 ≤ 𝑠), 𝑐′(𝑒2𝑗) = 𝑐𝑗

′, 𝑐1
′ (2 ≤ 𝑗 ≤ 𝑠), 𝑐′(𝑒3𝑗) = 𝑐𝑗

′, 𝑐1
′ , 𝑐2

′ (3 ≤ 𝑗 ≤), … … … , 𝑐′(𝑒𝑖𝑗) =

𝑐𝑠
′ , 𝑐1

′ , 𝑐2
′ , … … … , 𝑐𝑠−1

′ (1 ≤ 𝑖 ≤ 𝑟)(1 ≤ 𝑗 ≤ 𝑠).  Then 𝑆𝑖𝑗 = {𝑒11, 𝑒12, 𝑒13, … , 𝑒𝑘𝑠}  is a  𝜒′-set 

of 𝐺  such that  𝜒′(𝐺) = 𝑠. By Observation 2.3, 0 ≤ 𝑓𝜒′(𝐺) ≤ 𝑠. Since  𝜒′ -set of 𝐺  is not 

unique 𝑓𝜒′(𝐺) ≥ 1. It is easily observed that no singleton subsets or two element subsets of 
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𝑆𝑖𝑗(1 ≤ 𝑖 ≤ 𝑟), (1 ≤ 𝑗 ≤ 𝑠) is not a forcing subset of 𝑆𝑖𝑗 so that 𝑓𝜒′(𝑆𝑖𝑗) = 𝑠. Since this true 

for all  𝜒′-set  𝑆𝑖𝑗(1 ≤ 𝑖 ≤ 𝑟), (1 ≤ 𝑗 ≤ 𝑠) so that  𝑓𝜒′(𝐺) = 𝑠.  

Theorem 2.14. For the path 𝐺 =  𝑃𝑛 (𝑛 ≥  3), 𝑓𝜒′(𝐺) = {

0           𝑖𝑓 𝑛 = 3
1           𝑖𝑓 𝑛 = 4
2         𝑖𝑓 𝑛 ≥ 5  

 

Proof. Let 𝑃𝑛  be 𝑣1, 𝑣2, … , 𝑣𝑛  and let 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1(1 ≤ 𝑖 ≤ 𝑛 − 1).  For 𝑛 = 3, 

 𝑆 = 𝐸(𝐺) is   the unique 𝜒′ -set of 𝐺 , the result follows from Theorem 2.8(a).  

For 𝑛 = 4, 𝑆1 = {𝑒1, 𝑒2} and 𝑆2 = {𝑒2, 𝑒3}  are the 𝜒′-sets of 𝐺 such that 𝑓𝜒′(𝑆1) = 

𝑓𝜒′(𝑆2) = 1  so that 𝑓𝜒′(𝐺) = 1. So let 𝑛 ≥ 5.  Then 𝑆𝑖 = {𝑒𝑖, 𝑒𝑖+1}(1 ≤ 𝑖 ≤ 𝑛 − 1) 

and 𝑆𝑗𝑘 = {𝑒𝑗 , 𝑒𝑘}(1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 − 1) and |𝑗 − 𝑘|is odd are the only 𝜒′-sets of 𝐺 

such that  𝑓𝜒′(𝑆𝑖) = 2 for  (1 ≤ 𝑖 ≤ 𝑛 − 1)  and 𝑓𝜒′(𝑆𝑗𝑘) = 2  for  (1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 − 

 1)  so that𝑓𝜒′(𝐺) = 2.         

Theorem 2.15. For the cycle 𝐺 =  𝐶𝑛 (𝑛 ≥  4), 𝑓𝜒′(𝐺) = 2. 

Proof. Let 𝐶𝑛 be 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑣1 and let 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1(1 ≤ 𝑖 ≤ 𝑛 − 1) and 𝑒𝑛 = 𝑣𝑛𝑣1. 

We consider the following two cases. 

Case(1) 𝑛 is even  

𝑐(𝑒𝑖) = {
1 ,    𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑
2,    𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛 

 

Then 𝑆𝑖 = {𝑒𝑖, 𝑒𝑖+1}(1 ≤ 𝑖 ≤ 𝑛 − 1) and 𝑆𝑖𝑗𝑘 = {𝑒𝑗 , 𝑒𝑘}  (1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 − 1) 

and |𝑗 − 𝑘|is odd are the only 𝜒′-sets of 𝐺 such that 𝑓𝜒′(𝑆𝑖) = 2 and 𝑓𝜒′(𝑆𝑗𝑘) = 2 

for (1 ≤ 𝑖 ≤ 𝑛 − 1)  and (1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 − 1) so that 𝑓𝜒′(𝐺) = 2. 

Case(2) 𝑛 is odd 

𝑐(𝑒𝑖) = {

1  𝑖𝑓 𝑛  𝑖𝑠 𝑜𝑑𝑑         
2   𝑖𝑓 𝑛  𝑖𝑠 𝑒𝑣𝑒𝑛        
3      𝑖𝑓 𝑖 = 𝑛             

 

Since 𝐸(𝑣𝑛𝑣1) is the set of chromatic edges of 𝐺, 𝐸(𝑣𝑛𝑣1)  is a subset of every 𝜒′-set of 𝐺. It 

can be easily seen that any 𝜒′ -set of 𝐺  is of the form 𝑆 = 𝐸(𝑣𝑛𝑣1) ∪ {𝑥, 𝑦}, where 𝑥, 𝑦 ∈

{𝑒1, 𝑒2, … , 𝑒𝑛−1} so that 𝜒′(𝐺) = 𝑛 + 2. By Theorem 2.9,  𝑓𝜒′(𝐺) ≤ 𝑛 + 2 − 𝑛 = 2. Since 𝜒′-

set of 𝐺 is not unique 𝑓𝜒′(𝐺) ≥ 1. It is easily observed that no singleton subsets of 𝑆 is not a 

forcing subset of 𝑆 so that 𝑓𝜒′(𝑆) = 2. Since this is true for all 𝜒′-set 𝑆 of 𝐺, 𝑓𝜒′(𝐺) = 2. 

Theorem 2.16. For a positive integer 𝑎 ≥ 2,  there exists a connected graph 𝐺  such that 

𝑓𝜒′(𝐺) = 𝜒′(𝐺) = 𝑎. 

Proof. For  𝑎 = 2,  let 𝐺 = 𝐶4 . Then by Theorem 2.15, 𝑓𝜒′(𝐺) = 𝜒′(𝐺) = 𝑎.  So, let 
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𝑎 ≥ 3.  Let 𝐺 = 𝐾2,𝑎.  By Theorem 2.13, 𝑓𝜒′(𝐺) = 𝜒′(𝐺) = 𝑎.                                          

3. Conclusion 

In this article, we discuss about a new concept namely, forcing edge chromatic number of a 

graph. Also, the relation between edge chromatic number and forcing edge chromatic number 

is found. The above concept is examined by some standard graphs with examples. 
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